- Home
- Progetti Europei conclusi
7SHIELD
Project |
7SHIELD |
Title | Safety and Security Standards of Space Systems, ground Segments and Satellite data assets, via prevention, detection, response and mitigation of physical and cyber threats | Acronym | 7SHIELD |
Project ID | 883284 | Call | H2020-SU-INFRA-2018-2019-2020 |
Programme | H2020 | ||
Links | |||
Abstract
Mantenere i dati spaziali al sicuro da minacce fisiche e informatiche Lo spazio è la nuova frontiera della sicurezza informatica. A causa della crescente dipendenza dell’economia e dei governi attuali dalle comunicazioni satellitari, i segmenti terrestri dei sistemi spaziali ricevono enormi quantità di dati satellitari. Qualsiasi attacco fisico o informatico contro l’archiviazione, l’accesso o lo scambio di questi dati rappresenterebbe una grave minaccia per la sicurezza pubblica. Il progetto 7SHIELD, finanziato dall’UE, svilupperà un quadro olistico che consentirà la diffusione di servizi innovativi per la protezione ciberfisica dei segmenti terrestri comprensivi di recinzioni elettroniche, radar passivi e tecnologie laser. Il progetto farà uso di tecnologie avanzate per l’integrazione, l’elaborazione, l’analisi e la visualizzazione dei dati, nonché la sicurezza dei dati e la protezione dalle minacce informatiche per valutare la prevenzione, il rilevamento e la mitigazione delle minacce, sia fisiche che informatiche. Il progetto sarà valutato e dimostrato in cinque installazioni di segmenti terrestri di sistemi spaziali. |
RECIPE
Project |
RECIPE |
Title | REliable power and time-Constrain-aware Predictive management of heterogeneous Exascale systems | Acronym | RECIPE |
Project ID | 801137 | Call | H2020-FETHPC-2017 |
Programme | H2020 | ||
Activity | HTPC, cloud security, multi-cloud, distributed application, heterogeneous cloud, security SLA, decision support, deployment, monitoring, enforcement, security assurance, DevOps, lifecycle management | ||
Links | |||
Abstract
The current HPC facilities will need to grow by an order of magnitude in the next few years to reach the Exascale range. The dedicated middleware needed to manage the enormous complexity of future HPC centers, where deep heterogeneity is needed to handle the wide variety of applications within reasonable power budgets, will be one of the most critical aspects in the evolution of HPC infrastructure towards Exascale. This middleware will need to address the critical issue of reliability in face of the increasing number of resources, and therefore decreasing mean time between failures. To close this gap, RECIPE provides: a hierarchical runtime resource management infrastructure optimizing energy efficiency and ensuring reliability for both time-critical and throughput-oriented computation; a predictive reliability methodology to support the enforcing of QoS guarantees in face of both transient and long-term hardware failures, including thermal, timing and reliability models; and a set of integration layers allowing the resource manager to interact with both the application and the underlying deeply heterogeneous architecture, addressing them in a disaggregate way. Quantitative goals for RECIPE include: 25% increase in energy efficiency (performance/watt) with an 15% MTTF improvement due to proactive thermal management; energy-delay product improved up to 25%; 20% reduction of faulty executions. The project will assess its results against the following set of real world use cases, addressing key application domains ranging from well established HPC applications such as geophysical exploration and meteorology, to emerging application domains such as biomedical machine learning and data analytics. To this end, RECIPE relies on a consortium composed of four leading academic partners (POLIMI,UPV,EPFL,CeRICT); two supercomputing centers, BSC and PSNC; a research hospital, CHUV, and an SME, IBTS, which provide effective exploitation avenues through industry-based use cases. |
Partner
Riconoscimenti
Finanziato nell'ambito del bando H2020 Future and Emerging Technologies (FET) High-Performance Computing (HPC) 2017, il progetto RECIPE (REliable power and time-ConstraInts-aware Predictive management of heterogeneous Exascale systems) ha puntato a sviluppare un'infrastruttura di gestione delle risorse di runtime per applicazioni critiche per tempo di risposta e tasso di servizio nei futuri sistemi Exascale. Il CeRICT ha svolto un ruolo di primo piano nella definizione della proposta e nell'attuazione del piano di ricerca, affrontando in particolare il calcolo basato su acceleratori e la disaggregazione delle risorse in ambienti datacenter/cloud. Tra gli altri risultati, il gruppo di lavoro del CeRICT ha sviluppato un'infrastruttura hardware su FPGA per la gestione della configurazione degli acceleratori utente, del monitoraggio e della comunicazione dei dati infra/internodo, corredata di una corrispondente libreria software di basso livello. Inoltre, il gruppo di lavoro del CeRICT ha esplorato l’innovativa idea di Checkpointing/Restart (C/R) su FPGA, sviluppando l'hardware di supporto ed un corrispondente flusso software, che include un controller custom per la configurazione dinamica dell’FPGA ed un driver associato. Infine, a scopo dimostrativo, il gruppo ha sviluppato un acceleratore hardware dedicato per l'esecuzione parallela di kernel di tipo stencil Jacobi, che ha mostrato di poter sfruttare a pieno le potenzialità dei dispositivi FPGA di classe HPC valutati nel progetto RECIPE, in termini di potenza di calcolo e disponibilità di memoria ad alta banda. |
MANGO
Project | MANGO |
Title |
MANGO: exploring Manycore Architectures for Next-GeneratiOn HPC systems |
Acronym | MANGO |
Project ID | 671668 | Call | H2020-FETHPC-2014 |
Programme | H2020 | Rdg | CNECT |
Activity | Real-time HPC, power-performance-predictability, capacity computing, partitionability, reconfigurability | ||
Links | |||
Abstract
Abstract | |||
MANGO targets to achieve extreme resource efficiency in future QoS-sensitive HPC through ambitious crossboundary architecture exploration for performance/power/predictability (PPP) based on the definition of newgeneration high-performance, power-efficient, heterogeneous architectures with native mechanisms for isolation and quality-of-service, and an innovative two-phase passive cooling system. Its disruptive approach will involve many interrelated mechanisms at various architectural levels, including heterogeneous computing cores, memory architectures, interconnects, run-time resource management, power monitoring and cooling, to the programming models. The system architecture will be inherently heterogeneous as an enabler for efficiency and applicationbased customization, where general-purpose compute nodes (GN) are intertwined with heterogeneous acceleration nodes (HN), linked by an across-boundary homogeneous interconnect. It will provide guarantees for predictability, bandwidth and latency for the whole HN node infrastructure, allowing dynamic adaptation to applications. MANGO will develop a toolset for PPP and explore holistic pro-active thermal and power management for energy optimization including chip, board and rack cooling levels, creating a hitherto inexistent link between HW and SW effects at all layers. Project will build an effective large-scale emulation platform. The architecture will be validated through noticeable examples of application with QoS and high-performance requirements.Ultimately, the combined interplay of the multi-level innovative solutions brought by MANGO will result in a new positioning in the PPP space, ensuring sustainable performance as high as 100 PFLOPS for the realistic levels of power consumption (<15MWatt) delivered to QoS-sensitive applications in large-scale capacity computing scenarios providing essential building blocks at the architectural level enabling the full realization of the ETP4HPC strategic research agenda. |
Partner
Partner | |||
|
File | Description | File size |
---|---|---|
Project details | 0 kB |
SPECIAL
Project |
SPECIAL |
TITLE |
Scalable Policy-awarE linked data arChitecture for prIvacy, trAnsparency and compLiance |
Acronym | SPECIAL |
Project ID | 731601 | Call | H2020-ICT-2016-1 |
Programme | H2020 | Rdg | CNECT |
Activity | Big data PPP: privacy-preserving big data technologies | ||
Links | |||
Abstract
Abstract | |||
The SPECIAL project will address the contradiction between Big Data innovation and privacy-aware data protection by proposing a technical solution that makes both of these goals realistic. We will develop technology that: (i) supports the acquisition of user consent at collection time and the recording of both data and metadata (consent, policies, event data, context) according to legislative and user-specified policies; (ii) caters for privacy-aware, secure workflows that include usage/access control, transparency and compliance verification; (iii) demonstrates robustness in terms of performance, scalability and security all of which are necessary to support privacy preserving innovation in Big Data environments; and (iv) provides a dashboard with feedback and control features that make privacy in Big Data comprehensible and manageable for data subjects, controllers, and processors. SPECIAL shall allow citizens and organisations to share more data, while guaranteeing data protection compliance, thus enabling both trust and the creation of valuable new insights from shared data. Our vision will be realised and validated via real world use cases that - in order to be viable - need to overcome current challenges concerning the processing and sharing of data in a privacy preserving manner. In order to realise this vision, we will combine and significantly extend big data architectures to handle Linked Data, harness them with sticky policies as well as scalable queryable encryption, and develop advanced user interaction and control features: SPECIAL will build on top of the Big Data Europe and PrimeLife Projects, exploit their results, and further advance the state of the art of privacy enhancing technologies. |
Partner
Partner | |||
|
SIDIRR
Project |
SIDIRR |
Titolo |
Sistemi Integrati per la Diagnosi dell'iterazione Ruota/Rotaia nel trasporto ferroviario |
Acronimo | SIDIRR |
ID del Progetto | F/050167/03/X32 - CUP: B88I17000620008 |
Programma | DM del 1 giugno 2016 – Horizon 2020 |
Data inizio | 02/01/2017 | Data fine | 02/01/2020 |
Responsabile Scientifico | Ing. Giovanni Mannara | Coordinatori per CeRICT | Prof. Antonino Mazzeo |
Abstract
Abstract | |||
Il trasporto ferroviario è stato caratterizzato in questi ultimi anni dai seguenti 2 fattori concomitanti:
Questo ha determinato un utilizzo molto più intenso delle linee esistenti a cui si associa un conseguente degrado degli elementi del sistema molto più veloce. Quanto sopra ha avuto come conseguenza la necessità di sistemi diagnostici in grado di seguire l’evoluzione del degrado e di determinare, con sempre maggiore tempestività e frequenza, le necessità di manutenzione in grado di garantire le necessarie condizioni di sicurezza. A tutto questo si è aggiunta la Direttiva Europea 91/440/EEC che, imponendo la separazione della proprietà della rete dalla gestione del trasporto ferroviario, ha determinato una necessità di maggiori controlli fra le parti. L’interazione ruota-rotaia rappresenta un aspetto della massima importanza da monitorare, perché da un lato determina le condizioni di sicurezza e comfort del trasporto ferroviario e dall’altra determina le principali cause di usura. L’approccio che generalmente può essere seguito per monitorare questo aspetto può essere sia attraverso misure dei parametri geometrici degli elementi (ruota e rotaia) del sistema e sia attraverso la misura, mediante utilizzo di accelerometri, degli effetti di sollecitazione (vibrazioni) che si generano nel punto di contatto. Entrambi i tipi di misura possono essere eseguiti sia da terra che da bordo treno. Il presente progetto ha l’obiettivo di ottenere un miglioramento consistente dei sistemi orientati alla diagnostica dell’interazione ruota-rotaia attraverso:
La finalità del progetto consiste nel fornire al mercato ferroviario internazionale strumenti diagnostici di ausilio alla gestione del “Sistema Ferrovia”. Le imprese italiane del settore hanno acquisito un notevole vantaggio competitivo grazie all’azione trainanteverso l’innovazione del player principale italiano (RFI) che è all’avanguardia sullo scenario internazionalenell’impego di strumentazione diagnostica dell’interazione ruota-rotaia. Pertanto la finalità scientifica risiede nello sviluppo di quelle attività di ricerca già molto mature che potrannofornire risultati utili con una alta percentuale di successo. E questo sarà possibile anche grazie allacollaborazione con l’Organismo di Ricerca che offrirà competenze ed esperienze di alto livello. Sul piano dell’innovazione, le imprese proponenti potranno migliorare in maniera significativa alcuni loroprodotti utilizzando i risultati della ricerca così da aumentare il vantaggio competitivo di tipo tecnico sulmercato. Si prevede anche di diffondere i risultati che si otterranno nell’ambito di Convegni scientifici internazionalidedicati a questa tematica, che sempre di più vengono promossi dal mondo della ricerca. ad esempio INTELLIGENT RAIL SUMMIT 2016.
|
Partner di Progetto
Partner di Progetto | |||
|
Soggetti Esecutori
Soggetti Esecutori | |||
|
MUSA
Project |
MUSA |
Title | MUlti-cloud Secure Applications | Acronym | MUSA |
Project ID | 644429 | Call | H2020-ICT-2014-1 |
Programme | H2020 | ||
Activity | cloud security, multi-cloud, distributed application, heterogeneous cloud, security SLA, decision support, deployment, monitoring, enforcement, security assurance, DevOps, lifecycle management | ||
Links | |||
Abstract
Abstract | |||
The most challenging applications in heterogeneous cloud ecosystems are those that are able to maximise the benefits of the combination of the cloud resources in use: multi-cloud applications. They have to deal with the security of the individual components as well as with the overall application security including the communications and the data flow between the components. The main objective of MUSA is to support the security-intelligent lifecycle management of distributed applications over heterogeneous cloud resources, through a security framework that includes: security-by-design mechanisms to allow application self-protection at runtime, and methods and tools for the integrated security assurance in both the engineering and operation of multi-cloud applications. The MUSA framework leverages security-by-design, agile and DevOps approaches in multi-cloud applications, and enables the security-aware development and operation of multi-cloud applications. The framework will be composed of a) an IDE for creating the multi-cloud application taking into account its security requirements together with functional and business requirements, b) a set of security mechanisms embedded in the multi-cloud application components for self-protection, c) an automated deployment environment that, based on an intelligent decision support system, will allow for the dynamic distribution of the components according to security needs, and d) a security assurance platform in form of a SaaS that will support multi-cloud application runtime security control and transparency to increase user trust. The project will demonstrate and evaluate the economic viability and practical usability of the MUSA framework in highly relevant industrial applications representative of multi-cloud application development potential in Europe. The project duration will be 36 months, with an overall budget of 3,574,190 euros. |
Partner
Partner | |||
|
File | Description | File size |
---|---|---|
Project details | 0 kB |
OPTObacteria
Project |
OPTObacteria |
Title | Multianalyte automatic system for the detection of drug resistant bacteria. | Acronym | OPTObacteria |
Project ID | 286998 | Call | FP7-SME-2011 |
Programme | FP7 | Rdg | REA |
Activity | |||
Links | |||
|
Abstract
Abstract | |||
Infectious disease are responsible of high human health burden and cost. Time to diagnosis release and quality of the microrganism detection represent an area of interest for optical fiber based device application. OPTObacteria propose an highly expert consortium in which 4 SME and 4 research peformers from 3 European countries would synergize their efforts to provide a unique Automatic Laboratory Detector (ALD) to deliver a drug resistance report in a 4 or 4-8 hours timeframe. The time is depending on the experiment required, it avoid bacterial grwoth time, typical of the antibiogram typical report and provide an detection up to low ng concentration or even low. With respect to other optical-based device (like SPR, surface plamon resosnance) many limitations are overcome. |
Partner
Partner | |||
|
File | Description | File size |
---|---|---|
Project details | 0 kB | |
Final report | 0 kB |
SCYPRI
Project |
SCYPRI |
Title | SMART CYLINDERS FOR FLEXOGRAPHIC PRINTING INDUSTRY | Acronym | SCYPRI |
Project ID | 315335 | Call | FP7-SME-2012 |
Programme | FP7 | Rdg | REA |
Activity | SCYPRI - an FP7 project for innovation in flexographic printing | ||
Links | |||
|
Abstract
Abstract | |||
The SCYPRI project proposes the design, implementation and validation of an innovative and smart plate cylinder to eliminate the Flexographic Printing Industry problems: Ø The first target will be to obtain, through the integration of a novel multifunction fiber optic sensing system within the carbon fibre body cylinder, the data of the running behavior and the anomalies of the cylinder which can communicate with an autonomous control system giving it the data needed to dynamically adjust in real time the driving parameters of the process. Ø The second target is related to the optimization of the carbon fibre cylinder: the composite lamination, due to the physical and geometrical characteristics of the composite tube (high thickness, considerable high modulus fibre quantity, high curing temperature) suffers of some limitation due to the need of avoiding noticeable composite thermal stresses. Ø The last target is to develop a simple, effective and user friendly connection system between the cylinder and the adapters, as explained before, to improve the stiffness characteristics of the system. |
Partner
Partner | |||
|
File | Description | File size |
---|---|---|
Project details | 0 kB | |
Final report | 0 kB |